Requests counts per hour
Overview
The requests_hourly_counts_v2 function provides user message counts grouped by day of week and hour. Use this endpoint to:
- Identify peak traffic hours and days
- Analyze user activity patterns across the week
- Optimize staffing and resource allocation
Quick start
query MessagesPerHourV2(
$deskIds: _uuid
$brainIds: _uuid
$integrationIds: _uuid
$brainVersions: _int4
$channels: _text
$startDate: timestamp
$endDate: timestamp
$isTest: Boolean
) {
rows: requests_hourly_counts_v2(
args: {
desk_ids: $deskIds
brain_parent_ids: $brainIds
integration_ids: $integrationIds
brain_versions: $brainVersions
channels: $channels
start_time: $startDate
end_time: $endDate
is_test: $isTest
}
) {
counts
weekday
hour
}
}
Variables:
{
"deskIds": "{d2be0283-9b53-4d7b-b77d-2650f3a1a99c}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Try it
Loading GraphQL Playground...
Parameters
| Parameter | Type | Description |
|---|---|---|
deskIds | _uuid | Filter by desk IDs |
brainIds | _uuid | Filter by AI agent IDs |
integrationIds | _uuid | Filter by integration IDs |
brainVersions | _int4 | Filter by AI agent versions |
channels | _text | Filter by channels |
startDate | timestamp | Start date (format: yyyy-mm-dd) |
endDate | timestamp | End date (format: yyyy-mm-dd) |
isTest | Boolean | Exclude test sessions |
Response fields
| Field | Type | Description |
|---|---|---|
counts | Int | Number of requests for this day/hour |
weekday | Int | Day of week (1=Monday, 2=Tuesday, ..., 7=Sunday) |
hour | Int | Hour of day (0-23) |
Common use cases
- Single desk
- Multiple desks
- Multiple AI agents
- AI agent versions
- Specific channels
- Production only
Get hourly request distribution for a single desk:
{
"deskIds": "{d2be0283-9b53-4d7b-b77d-2650f3a1a99c}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Get hourly distribution across multiple desks:
{
"deskIds": "{d2be0283-9b53-4d7b-b77d-2650f3a1a99c, 51ff88a7-dfab-44e5-9303-9b2bf13f1c94}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Filter by multiple AI agents:
{
"brainIds": "{a2wv9283-9b53-4d7b-b77d-2650f3a1a99c, 99xx33p9-dfab-44e5-9303-9b2bf13f1c94}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Filter by specific AI agent versions:
{
"brainIds": "{a2wv9283-9b53-4d7b-b77d-2650f3a1a99c}",
"brainVersions": "{37,38,39}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Filter by specific channels:
{
"deskIds": "{d2be0283-9b53-4d7b-b77d-2650f3a1a99c}",
"brainIds": "{a2wv9283-9b53-4d7b-b77d-2650f3a1a99c}",
"channels": "{web, facebook, viber}",
"brainVersions": "{37,38,39}",
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Exclude test sessions:
{
"brainIds": "{a2wv9283-9b53-4d7b-b77d-2650f3a1a99c}",
"isTest": false,
"startDate": "2024-01-08",
"endDate": "2024-01-17"
}
Example response
{
"data": {
"rows": [
{
"counts": 18,
"weekday": 2,
"hour": 16
},
{
"counts": 10,
"weekday": 5,
"hour": 10
},
{
"counts": 10,
"weekday": 2,
"hour": 15
},
{
"counts": 7,
"weekday": 5,
"hour": 13
},
{
"counts": 6,
"weekday": 1,
"hour": 9
}
]
}
}